
T2 Terme und Gleichungen

Thema: Terme und Gleichungen umformen

Terme umformen

Man formt Terme um, um sie zu vereinfachen, die Struktur zu verändern oder zwei Terme als äquivalent (gleichwertig) zu erkennen. Bei Termumformungen gelten einige Rechenregeln:

(1) **Distributivgesetz**:
$$a \cdot (b + c) = a \cdot b + a \cdot c$$

(2) **Assoziativgesetz**:
$$(a + b) + c = a + (b + c)$$

(3) **Kommutativgesetz**:
$$a + b = b + a$$

Assoziativ- und Kommutativgesetz gelten auch bei der Multiplikation.

$$a + (b + c) = a + b + c$$
 und $a + (b - c) = a + b - c$

$$a - (b + c) = a - b - c$$
 und $a - (b - c) = a - b + c$

Außerdem können zur Vereinfachung folgende **Konventionen** genutzt werden:

- Variablen werden alphabetisch angeordnet. (a)
- (b) Multiplikationszeichen vor oder nach Variablen können weggelassen werden.
- (c) Zahlen werden vor Variablen angeordnet.
- Die Zahl "1" kann bei einer Multiplikation weggelassen werden. (d)

Gleichungen umformen

Gleichungen bestehen aus Termen, die mit einem Gleichhheitszeichen verbunden sind. Durch Äquivalenzumformungen werden Gleichungen nach einer Variable aufgelöst. Äquivalenzumformungen zählen:

- Termumformungen (siehe Rechenregeln oben),
- die Addition, Subtraktion, Division oder Multiplikation desselben Terms auf **beiden Seiten** der Gleichung (für die Division gilt, dass der Term durch den geteilt wird, ungleich Null sein muss)

Musterbeispiel - Äquivalenzumformungen

Löse die Gleichung nach x auf!

$$5 \cdot (3x+1) - 2 \cdot (x-1) = (-6+x)$$

1. Schritt - Klammern auflösen:

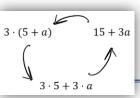
$$5 \cdot (3x+1) - 2 \cdot (x-1) = (-6+x)$$

$$15x + 5 - 2x + 2 = -6 + x$$

Distributivgesetz

2. Schritt – Zusammenfassen:

$$15x + 5 - 2x + 2 = -6 + x$$
$$13x + 7 = -6 + x$$


3. Schritt - nach Variablen auflösen:

$$\begin{array}{rcl}
 13x + 7 &= -6 + x & | -x \\
 12x + 7 &= -6 & | -7 \\
 12x &= -13 & | : 12 \\
 x &= -\frac{13}{12} & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & | & | \\
 x &= -\frac{13}{12} & | & | & | & | & |$$

T2

T2 Terme und Gleichungen

Thema: Terme und Gleichungen umformen

Übungsaufgaben

1. Welche Termumformungen sind richtig? Kreise ein.

Ursprünglicher Term:

$$5 + (3 \cdot x + 7) \cdot 2$$

Hinweis: Hier kann dir der Infokasten und die Musteraufgabe helfen!

a.
$$5 + 3 \cdot x + 7 \cdot 2$$

b.
$$5(3x + 7)2$$

C.
$$5 + 6x + 14$$

d.
$$5 + (3x + 7) \cdot 2$$

e.
$$5 + 2 \cdot 3 \cdot x + 2 \cdot 7$$

f.
$$5 + 6x + 7$$

2. Löse die Klammern auf!

a.
$$5 + (3 + b)$$

b.
$$8 \cdot (1 + 4 + a)$$

C.
$$6x - (-x + 1)$$

d.
$$5n \cdot (-3 - m)$$

e.
$$a + (-3 \cdot x)$$

f.
$$(3a + 5d) \cdot 2a$$

3. Vereinfache die Terme soweit wie möglich!

a.
$$3x + 5x$$

b.
$$12x - 12 + x + 4$$

C.
$$4ab + 2ac - ab$$

d.
$$a + 2b - 4a + 5a$$

e.
$$5x + 7 - 2x - 3x$$

f.
$$2ab \cdot 3 + b \cdot a$$

4. Vereinfache die Terme soweit wie möglich!

a.
$$12x - 12 \cdot (y + 2 \cdot x)$$

b.
$$3x \cdot 5y \cdot 2$$

C.
$$(5+3)\cdot 2+7$$

d.
$$2(x+y)-2y$$

e.
$$(9x - 12y): 3 - x$$

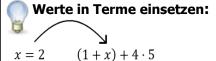
f.
$$5 \cdot (x-3) + 4x$$

5. Ergänze die Lücken!

a.
$$-6x - 8 = -(\dots \dots)$$

b.
$$3u - 2z - 1 = 3u + (\dots \dots)$$

C.
$$(-5a - 6b) \cdot (\dots \dots) = 15a^2 + 18ab$$


d.
$$15p + 10p^2 = (\dots \dots) \cdot (3 + 2p)$$

6. Setze für die Variablen die Zahl **5** ein und berechne den Wert des Terms!

a.
$$32 + 2 \cdot x$$

b.
$$(a+5)^2 \cdot 2$$

C.
$$n: 5 - 3n$$

 \rightarrow (1 + 2) + 4 · 5 = 3 + 20 = 23

7. Schreibe als Summe!

a.
$$2 \cdot (x + y)$$

b.
$$3a - (-2b)$$

C.
$$6x \cdot (4x - 1)$$

d.
$$(u - v)(u + v)$$

8. Schreibe als Produkt! \BIN

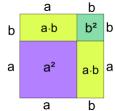
a.
$$3a + 3$$

C.
$$a^2 + 2ab + b^2$$

b.
$$25x^2 - 25x$$

d.
$$b^2 + 7abc - \frac{1}{2}b$$

9. Vereinfache! **PW**


a.
$$10^2 \cdot 10^3$$

b.
$$x^2 - 2x^2$$

C.
$$\frac{10}{10^2}$$

d.
$$a^5 \cdot a^{-5}$$

10. Die Umformung unten wurde von einem Schüler durchgeführt. Erkläre anhand der Abbildung rechts und einer Rechnung, warum die Umformung im Allgemeinen falsch ist. SBIN

Verweis

BIN Binomische

Formeln

$$(a+b)^2 = a^2 + b^2$$

11. Kreuze die zum gegebenen Term äquivalenten Terme an!

Hinweis: Mehrere Antworten können richtig sein!

$$\Box$$
 11 x^2y

$$\square 30x^2y$$

$$\Box$$
 $(11x)y$

$$\Box -x^2 \cdot (-30y)$$

b.
$$\frac{7-14x}{7}$$

$$\square \frac{1}{7} \cdot (7 - 14x) \qquad \square \ 1 - 14x$$

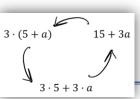
$$\Box 1 - 142$$

$$\Box$$
 1 – 2 x

$$\Box$$
 $-14x + 1$

C.
$$a^3 + a^2 + a$$

$$\square$$
 3 a^6


$$\Box a \cdot (a^2 + a)$$

$$\Box a \cdot (a^2 + a + 1)$$

$$\square \ a \cdot (a^2 + a) \quad \square \ a \cdot (a^2 + a + 1) \quad \square \ a^3 + a \cdot (a + 1)$$

T2 Terme und Gleichungen

Thema: Terme und Gleichungen umformen

- **12.** Gib die Umformung an, die man durchführen muss, um die Gleichung im nächsten Schritt zu lösen!
 - **a.** $2 \cdot x = 50$
- **b.** x + 2.8 = 3.3
- **C.** x 3 = -9

d. $\frac{x}{5} = \frac{4}{7}$

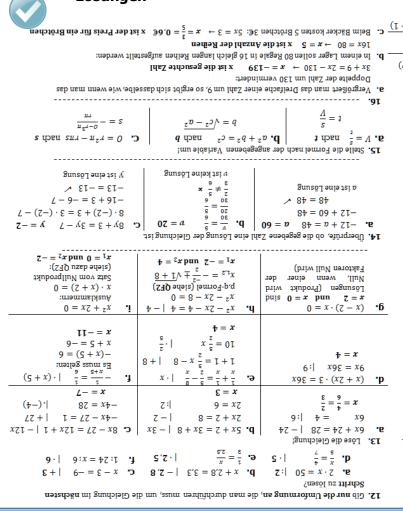
e. $\frac{1}{3} = \frac{x}{2.5}$

- **f.** 1:24 = x:6
- **13.** Löse die Gleichung! *Hinweis: Hier kann dir die Musteraufgabe helfen!* Manchmal geht es schneller, die Gleichung durch inhaltliche Überlegungen oder Probieren zu lösen, mit den Äquivalenzumformungen kommst du jedoch auch zur Lösung.
 - **a.** 6x + 24 = 28
- **b.** 5x + 2 = 3x + 8
- **C.** 8x 27 = 12x + 1

d. $(x + 2x) \cdot 3 = 36x$

g. $(x-2) \cdot x = 0$

- **e.** $\frac{1}{x} + \frac{1}{x} = \frac{5}{2} \frac{8}{x}$ **h.** $x^2 2x 4 = 4$
- **f.** $-\frac{1}{x+5} = \frac{1}{6}$ **i.** $x^2 + 2x = 0$
 - QF2 Quadratische Funktionen und.


- **14.** Überprüfe, ob die gegebene Zahl eine Lösung der Gleichung ist!
 - **a.** -12 + a = 48
- a = 60
- **b.** $\frac{v}{30} = \frac{5}{6}$
- **C.** 8y + 3 = 3y 7

Verweis

Gleichungen

- 15. Stelle die Formel nach der angegebenen Variablen um!
 - **a.** $V = \frac{s}{t}$ nach **t**
- **b.** $a^2 + b^2 = c^2$ nach **b**
- **C.** $O = r^2\pi r\pi s$ nach **s**
- **16.** Gib eine Gleichung an, die den Sachverhalt beschreibt und löse die Gleichung! Was bedeutet die Variable?
 - **a.** Vergrößert man das Dreifache einer Zahl um 9, so ergibt sich dasselbe, wie wenn man das Doppelte der Zahl um 130 vermindert.
 - **b.** In einem Lager sollen 80 Regale in 16 gleich langen Reihen aufgestellt werden.
 - C. Beim Bäcker kosten 5 Brötchen 3€.

Lösungen

$+v)\cdot v + \varepsilon v$ x	$(1 + n + 2n) \cdot n$	(n + 2n)	· v 🗆	926 □	\mathbf{c} , $a_3 + a_2 + a_3$
ĭ + x₽ĭ- □	x2 - 1 🗷	x+1.	- t □ (x†	$\mathbf{z} \cdot (\mathbf{z} - \mathbf{z})$	<u>∠</u> •q
$\mathbf{x} - x^2 \cdot (-30y)$	γ(x11) 🗆			ı gegeben Term	 11. Kreuze die zun 31. δx · 6xy
ausmultiplizieren: $(a+b)^2=(a+b)\cdot (a+b)=a^2+ab+ab+b^2=a^2+2ab+b^2$					
Formel kann man auch das Distributivgesetz anwenden und die beiden Klammerterme					
$(a+b)^2=a^2+b^2$ die beiden Rechtecke mit ab fehlen. Zum Nachrechnen der binomischen					
grumrotmU teb ied nebrüwgnubliddA teb nI $^2b + ^2b \le 2$ neszegyev					
10. Bei der Umformung wurde der mittlere Summand der ersten binomischen Formel					
	$\tau = {}_0 v = {}_{s-} v$			01 =	$C = \frac{70\pi}{10\pi} = 70\pi$
	zx = -xz	- _z x -q			9° 10₅ 10₃
					9. Vereinfache!
	72	\			(q+v)
	$p + \gamma ac - \frac{1}{2}$)·q 'p	$\cdot (q + p)$	= z(q+p):	C. Bin. Forme
	$(t - x) \cdot x$ $\leq z$.a.z .d		(1. 3 · (a + 1)
				oqnktl	8. Schreibe als Pr
	(za-)+zn=za-	- zn ' p	(x9-	$-) + {}_{z}x + 7 = 3$	c• 54x² − 6
	97 H	p' 3α-			\mathbf{g}^{*} $\nabla x + \nabla \lambda$
				nume	 Schreibe als 5
₽ T−= 9	i				
= g ⋅ g	– g:g	00Z = Z ·	$z(2+2)_3$	7₺	$32 + 2 \cdot 5 =$
$= u_{\xi}$	- g:u • ɔ	= 2 ·	$z(\varsigma + v)$	·q	9. $32 + 2 \cdot x =$
6. Setze für die Variablen die Zahl 5 ein und berechne den Wert des Terms!					
$(d7 + \varepsilon) \cdot (ds)$	$\mathbf{g}) = z d0t + dgt .$	p q1	$12a^2 + 18a$	$= (n\xi -) \cdot (d\theta)$	9 − vg−) ••
$(\tau - zz -) + n$	$\mathbf{g} = \mathbf{g} - \mathbf{z}\mathbf{z} - \mathbf{n}\mathbf{g} \mathbf{g}$	q		(8+x9)-=	9 - x9 - 'e
				cken!	5. Ergänze die Lü
st - x6 .	$1 \sqrt[4]{b} - x = x - \sqrt{4}$	- xε •a		xz = x	\mathbf{q} , $2x + 2y - 2y$
22 = 7 + 7 = 23)	γχ0ε • q	127	$x_{7} = x_{7}$	a. 12 <i>x</i> – 12 <i>y</i> –
4. Vereinfache die Terme soweit wie möglich					
Jαb	'}	L	' 9	97	d. 2α +
3ab + 2ac	. 5	$8 - x \xi 1$	'q		v g 'e
		'Ч	oilgöm əlw ti	e Terme sowei	3. Vereinfache d
pp0T +	z ¹ 9 'J		6. a – 3:	นเนร	- ust- .b
$\tau - x \angle = \tau - x +$	+ x9 'O v8 + 0	b = n8 + 2	p ' 8 + 32	q + 8 = q	9" 2+3+
				អ្នកទ ពេរទព	2. Löse die Klamı
L +	x9+5 .1 (1.	$7 + x \cdot 5 \cdot 3$	e. 6+7	2.(7+	$x\xi$) + 2 .b
+14	x9 + 9 '3	7(7+	b. 5(3x	2 · 4 +	T. a. 5+3·x