PW Rechengesetze

Thema: Potenzen und Wurzeln

$$x^{\frac{1}{2}} = \sqrt{x}$$

Die Rechenoperationen "Potenzieren" und "Wurzelziehen"

Das Potenzieren ist eine **abgekürzte Schreibweise für mehrfaches Multiplizieren** einer Zahl oder eines Ausdrucks mit sich selbst. Mathematisch definiert man die Potenz a^n als:

$$a^n \coloneqq \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n-mal\ Faktor\ a}$$

mit n aus den natürlichen Zahlen und a aus den reellen Zahlen.

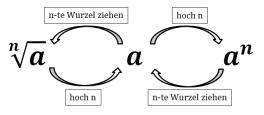
Dabei nennt man a die **Basis** und n den **Exponent**.

Die Potenzgesetze beschreiben Regeln zum Rechnen mit Potenzen und sind auf der rechten Seite zusammengefasst.

Die Umkehroperation zum Potenzieren ist das **Wurzelziehen.**

Es gilt zum Beispiel: $5^2 = 25$ und $\sqrt{25} = 5$

Allgemein wird das Ziehen der n-ten Wurzel durch das Potenzieren mit n rückgängig gemacht und umgekehrt. Für eine nichtnegative Zahl a gilt also:



Potenzgesetze P1-5:

Es seien a und b reelle Zahlen <u>ungleich 0</u>, m und n sind natürliche Zahlen. Es gilt dann:

• für Potenzen mit gleicher Basis:

$$a^m \cdot a^n = a^{m+n}$$
 und $a^m \cdot a^n = \frac{a^m}{a^n} = a^{m-n}$ (P1)

• für Potenzen mit gleichem Exponenten:

$$a^m \cdot b^m = (a \cdot b)^m$$
 und $a^m \cdot b^m = \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$ (P2)

• für das Potenzieren von Potenzen:

$$(a^m)^n = a^{m \cdot n} \qquad (P3)$$

Weiterhin definiert man für alle $a \neq 0$ und n aus den natürlichen Zahlen:

$$a^0 = 1 \text{ und} (P4)$$

$$a^{-n} = \frac{1}{a^n} \tag{P5}$$

Wurzeln lassen sich auch als Potenzen schreiben und umgekehrt, denn es gilt

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 (PW)

für $a \ge 0$, m aus den ganzen Zahlen und n aus den positiven natürlichen Zahlen. Es gelten durch diese Definition alle Rechenregeln, die auch für das Rechnen mit Potenzen gelten.

Musterbeispiel

Vereinfache den folgenden Term soweit wie möglich: $a^2 \cdot a^4 + \left(\frac{a^6}{a^2}\right) - (a^2)^3 + (a \cdot b)^4$ *Lösung:* Wir betrachten die einzelnen Summenanden:

•
$$a^2 \cdot a^4 = \underbrace{a \cdot a}_{a^2} \cdot \underbrace{a \cdot a \cdot a \cdot a}_{a^4} = a^{2+4} = a^6$$
 (P1)

•
$$\frac{a^6}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a} = a^{6-2} = a^4$$
 (P1)

•
$$(a^2)^3 = a^2 \cdot a^2 \cdot a^2 = a^{2+2+2} = a^{2\cdot 3} = a^6$$
 (P3)

•
$$(a \cdot b)^4 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b) = \mathbf{a^4} \cdot \mathbf{b^4}$$
 (P2)

Zusammengefasst vereinfacht sich der Term wie folgt:

$$a^{2} \cdot a^{4} + \left(\frac{a^{6}}{a^{2}}\right) - (a^{2})^{3} + (a \cdot b)^{4} = a^{6} + a^{4} - a^{6} + a^{4} \cdot b^{4}$$
$$= a^{4} + a^{4} \cdot b^{4}$$
$$= a^{4} \cdot (b^{4} + 1)$$

PW Rechengesetze

Thema: Potenzen und Wurzeln

Übungsaufgaben

Hinweis: Es wird vorausgesetzt, dass alle Variablen nur Werte ungleich Null annehmen.

1. Kreuze die richtigen Aussagen an! Hinweis: Hier kann dir der Infokasten helfen!

$\square x^2 + 2x^2 = 3x$

$$\square b^3 \cdot b^4 = b^7$$

$$\Box \frac{a^6}{a^4} = a^2$$

$$\Box \frac{1}{c^4} = -c^4$$

$$\square \ a^2 + a^3 = a^5 \qquad \square \ u^3 \cdot u^3 = u^9$$

$$\square u^3 \cdot u^3 = u^9$$

$$\square v^{-4}$$
: $v^{-4} = 1$

$$\square (l^2)^3 = l^5$$

Tipp: Nutze bei den Aufgaben 2 und 3 die Beziehung (PW) und bei Aufgabe 4 und 5 die Beziehung (P5) aus dem Infokasten! 🕦

a.
$$\sqrt{7}$$

b.
$$\sqrt[4]{10}$$

C.
$$\sqrt[6]{\left(\frac{4}{5}\right)^2}$$

d.
$$\sqrt{b^3}$$

e.
$$\sqrt[3]{5^4}$$

Schreibe als Potenz! **3.** Schreibe als Wurzel! **4.** Stelle mit positivem

a.
$$3^{\frac{1}{2}}$$

c.
$$b^{\frac{3}{4}}$$

d.
$$5^{-\frac{3}{7}}$$

Exponenten dar!

$$\sim$$
 \sim \sim 2

b.
$$(a \cdot b)^{-4}$$
c. $\frac{x^{-1}}{3}$

C.
$$\frac{x^{-1}}{3}$$

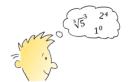
d.
$$\left(\frac{1}{x}\right)^{-2}$$

5. Stelle mit negativem Exponenten dar!

a.
$$\frac{1}{\lambda}$$

b.
$$\frac{1}{a^2}$$

c.
$$\frac{3}{h}$$



6. Kopfrechnen Berechne ohne Taschenrechner!

- **b.** -2^4 **c.** $(-2)^4$

- **c.** $(-2)^4$ **d.** 2^{-4} **h.** $\left(\frac{3}{4}\right)^{-1}$ **i.** 10^{-2}

7. Fasse die Terme mithilfe der Potenzgesetze zusammen! Stelle das Ergebnis mit positivem Exponenten dar! Hinweis: Hier kann dir der Infokasten 📵 und die Musteraufgabe 🤻 helfen! **b.** $\frac{48^{-1}}{16^{-1}}$ **c.** $y^4 \cdot (-z)^4$ **d.** $b^{3x} : b^x$

a.
$$2^{-4} \cdot 2^{5}$$

b.
$$\frac{48^{-1}}{16^{-1}}$$

c.
$$y^4 \cdot (-z)^4$$

d.
$$b^{3x}$$
: b^x

e.
$$a^4 \cdot a^{x+2}$$

f.
$$(c^{-4})^3$$

g.
$$4^{-1} \cdot b^{-1}$$

f.
$$(c^{-4})^3$$
 g. $4^{-1} \cdot b^{-1}$ **h.** $10x^5 \cdot (-x^3) \cdot x$ **i.** $\frac{a^8}{4a^2}$

j.
$$\frac{b}{l}$$

8. Fasse die Wurzelterme zusammmen!

a.
$$\sqrt{a} \cdot \sqrt{a}$$

b.
$$\sqrt{x} \cdot \sqrt{y}$$

d. $a \cdot \sqrt{a^2}$

$$C = \frac{x}{x}$$

e.
$$\frac{\sqrt{u}}{\sqrt{v}}$$

f.
$$\sqrt[3]{a} \cdot \sqrt[6]{a}$$

g.
$$\sqrt{x^3} \cdot \sqrt[3]{x}$$

Hinweis: Zum Vereinfachen von Wurzeltermen kann man Wurzeln

in Potenzen umschreiben (PW) und

9. Wie kann man $\sqrt[3]{48}$ noch darstellen? *Hinweis: Mehrere Antworten können richtig sein!*

- $\Box 48^{\frac{1}{3}}$
- □ 16
- $\square \sqrt[3]{8} \cdot \sqrt[3]{6} \qquad \square 4 \cdot \sqrt[3]{6} \qquad \square 2 \cdot \sqrt[3]{6}$

10. Kreuze die zum gegebenen Term äquivalenten Terme an! Hinweis: Mehrere Antworten können richtig sein!

- **a.** $(a^3b^{-5}c)^{-4} \square a^{-1}b^{-9}c^{-3}$
- $\Box a^{-12}b^{20}c^{-4}$

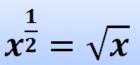
b. $y^{(-3)^{\frac{1}{2}}}$

- $\Box y^9$

- **c.** $2x^{-2} + 2y^{-2}$ $\Box \frac{1}{2x^2} + \frac{1}{2y^2}$ $\Box 2 \cdot \left(\frac{1}{x^2} + \frac{1}{y^2}\right)$ $\Box \frac{2}{x^2 + y^2}$

PW Rechengesetze

Thema: Potenzen und Wurzeln



11. Fülle die Kästchen aus, sodass die Gleichung stimmt!

a.
$$\sqrt[24]{a^{\Box \cdot 3}} = \sqrt[4]{a^3}$$

b.
$$3^{\square} = 27$$

c.
$$3^{\square} = 9^2$$

d.
$$(\sqrt[4]{2})^{\Box} = \sqrt[4]{8}$$

e.
$$\frac{z^{-3}}{z^{\square}} = z^4$$

f.
$$7.34 \cdot 10^{\square} = 7340$$

12. Entscheide, welche Aussagen wahr oder falsch sind! Begründe deine Entscheidung kurz!	wahr	falsch	Begründung
a. Für alle $a, b \ge 0$ und n aus den natürlichen Zahlen gilt: $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$			
b. Für alle $a \ge 0$ gilt: $a^{\frac{2}{3}} \cdot a^{\frac{3}{2}} = a$			
c. Für alle $a \ge 0$ gilt: $\sqrt[n]{a^n} = (\sqrt[n]{a})^n = a$			

13. *** Vermischtes!

a. Löse die Klammer auf und fasse zusammen: $\frac{1}{2}(x^2-y^3)^2$

b. Setze in die Gleichung $V = \frac{s}{t}$ für $s = 10^{-1}$ und $t = \sqrt[3]{8}$ ein und berechne V.

C. Vereinfache soweit wie möglich: $\frac{\sqrt{x} \cdot \sqrt[3]{x^2}}{6\pi}$

Verweis

BIN Binomische Formeln

Lösungen

c
$$\frac{e^{\sqrt{x}}}{\sqrt{x}} = \frac{x^{\frac{2}{5}}}{x^{\frac{2}{5}} \cdot \frac{3}{5}} = \frac{x^{\frac{2}{5}}}{x^{\frac{2}{5}}} = \frac{x^{\frac{2}{$$

a.
$$\frac{1}{2}(x^2 - y^3)^2 = \frac{1}{2}(x^4 - 2x^2y^3 + y^9) = \frac{1}{2}\frac{1}{8\sqrt{\xi}} - \frac{1}{2}x^4 - \frac{1}{2}y^9 + \frac{1}{2}y^9$$

$$\frac{1}{2}(x^4 - y^3)^2 = \frac{1}{2}(x^4 - 2x^2y^3 + y^9) = \frac{1}{2}(x^4 - y^3)^2 = \frac{1}{2}(x^4 - y^4)^2 = \frac{1}{$$

a.
$$\frac{1}{2}(x^2 - y^3)^2 = \frac{1}{2}(x^4 - 2x^2y^3 + y^9) = \frac{1}{2}x^4 - x^2y^3 + \frac{1}{2}y^9$$

Potenzieren mit n rückgängig gemacht und umgekehrt.

c. richtig - siehe Infokasten – Das Ziehen der n-ten Wurzel wird mit durch das

b. falsch - Mit (P1) ergibt sich:
$$a = \frac{1}{3} \cdot a = \frac{1}{3}$$

$$\underline{q} \wedge \cdot \underline{v} \wedge = \underline{\overline{z}} q \cdot \underline{\overline{z}} v = \underline{\overline{z}} (q \cdot v) = \underline{q \cdot v} \wedge$$

diesen Ausdruck wiederrum in Wurzelschreibweise ergibt sich also insgesamt: im nächsten Schritt mit dem Potenzgesetz (P2) umformen zu $a\bar{\hat{z}}\cdot b\bar{\hat{z}}.$ Schreibt man

12. a. richtig - Man kann $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ in Potenzschreibweise umformen zu $(a \cdot b)^{\frac{1}{z}}$ und

a.
$$^{24}\sqrt{66^{3}} = ^{4}\sqrt{63}$$
 b. $^{33} = 27$ **c.** $^{34} \cdot 10^{3} = 7340$ **d.** $(^{4}\sqrt{2})^{3} = ^{4}\sqrt{8}$ **e.** $^{2-3} = 2^{4}$ **f.** $^{7}34 \cdot 10^{3} = 7340$

 $\frac{z-(q\cdot v)}{z-(q\cdot v)}$	$\frac{q}{a^2 \cdot b^{-3}}$	$\frac{\sigma_{\rm S}}{p_{\rm g}}$	q · ₁-1 □	$\mathbf{d} \cdot \frac{a^{-1} \cdot b^{3}}{\mathbf{c} \cdot b^{-2}}$			
$\frac{\zeta(\chi x)}{\zeta \chi^2 + \zeta \chi^2} \mathbf{X}$	$\frac{z^{\mathcal{K}+z}x}{z}$	$\left(\frac{z^{\mathcal{K}}}{t} + \frac{z^{\mathcal{X}}}{t}\right) \cdot \mathbf{Z}$	$\frac{z^{\chi z}}{\tau} + \frac{z^{\chi z}}{\tau} \square$	c. $\sum x^{-2} + \sum y^{-2}$			
$\frac{6^{\kappa}}{1}$	6−1 □	^λ _e □	₆ λ 🗷	p. y ⁽⁻³⁾²			
$\mathbf{x} \frac{a_{15}c_4}{p_{50}}$	$ \Box \frac{(a^{-3}b^{5}c)^{4}}{1}$	$_{t-}^{2}\sigma_{50}q_{51}$	$\Box a_{-1}p_{-6}c_{-3}$	9. $(a_3 p_{-2}c)^{-4}$			
10. Kreuze die zum gegebenen Term äquivalenten Terme an!							

11
$$\mathbf{x}\sqrt{y} = \overline{\delta} \cdot \mathbf{x} = \overline{\delta} \cdot \overline{\delta} \cdot \mathbf{x} = \overline{\delta} \cdot \mathbf{x} = x \cdot \overline{\delta} \cdot \mathbf{x} = x$$

$$\overline{\mathbf{a}} \sqrt{\mathbf{b}} = \overline{\mathbf{b}} \mathbf{a} = \frac{1}{6} + \frac{1}{6} \mathbf{a} = \frac{1}{6} + \frac{1}{6} \mathbf{a} = \frac{1}{6} \mathbf{a} = \frac{1}{6} \mathbf{a} + \frac{1}{6} \mathbf{a} = \frac{1}{6} \mathbf{a} = \frac{1}{6} \mathbf{a} + \frac{1}{6} \mathbf{a} = \frac{1}{6} \mathbf{a$$

a.
$$\sqrt{x} \cdot \sqrt{y} = \sqrt{x^2} = x^3 = 3\sqrt{x^2}$$

b. $\sqrt{x} \cdot \sqrt{y} = \sqrt{x} \cdot \frac{3}{x} = 3\sqrt{x}$

c. $\sqrt{x} \cdot \sqrt{y} = \sqrt{x} \cdot \frac{3}{x} = 3\sqrt{x}$

e. $\sqrt{y} \cdot \sqrt{y} \cdot \sqrt{y} = \sqrt{x} \cdot \sqrt{y} = \sqrt{x}$

8. Fasse die Wurzelterme zusammmen!

$$\frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}} = \frac{1}{\sqrt{q}}$$

$$\frac{1}{4} = \frac{1}{8} n \cdot \frac{1}{4} = \frac{1}{8} n \cdot \frac{1}{4} = \frac{1}{8} n$$

$$\mathbf{p}^*$$
 $\mathbf{1}_0 x^5 - \mathbf{1}_0 x^5 - \mathbf{1}_0 x^5 - \mathbf{1}_0 x^5 - \mathbf{1}_0 x^6 - \mathbf{1}_0$

$$\frac{q_{t}}{r} = {}_{t-}(q_{t}) = {}_{t-}q \cdot {}_{t-t}$$

$$\mathbf{f}$$
 $(c^{-4})^3 = c^{-12} = \frac{1}{c^{12}}$

6.
$$a_4 \cdot a_{x+5} = a_{4+x+5} = a_{6+x}$$

$$\mathbf{q} \cdot p_{3x} : p_x = p_{3x-x} = \mathbf{p}_{5x}$$

$$\mathbf{C}$$
. $\lambda^{4} \cdot (-z)^{4} = (-y\mathbf{Z})^{4}$

$$\mathbf{p}_{\bullet} = \mathbf{1} - \mathbf{g} = \mathbf{1} - \mathbf{g}_{\bullet} = \mathbf{g}_{\bullet} = \mathbf{g}_{\bullet} = \mathbf{g}_{\bullet}$$

$$\mathbf{Z} = \mathbf{Z} = \mathbf{Z} \mathbf{Z} \cdot \mathbf{z} = \mathbf{Z}$$

6.
$$\sqrt[3]{2_4} = 2\frac{3}{3}$$

6. $\sqrt[3]{2_5} = \sqrt{\frac{3}{2}}$
6. $\sqrt[3]{2_5} = \sqrt{\frac{3}{2}}$
7. $\sqrt[3]{2_5} = \sqrt{\frac{3}{2}}$
8. $\sqrt[3]{2_5} = \sqrt{\frac{3}{2}}$
9. $\sqrt[3]{2_5} = \sqrt$

$$a_{2} + a_{3} = a_{2}$$

$$a_{3} \cdot p_{4} = p_{2}$$

$$a_{5} \cdot p_{4} = p_{2}$$

$$a_{6} \cdot p_{4} = p_{2}$$

$$a_{7} \cdot p_{4} = p_{2}$$

$$a_{7} \cdot p_{4} = p_{2}$$

$$a_{8} \cdot p_{4} = p_{2}$$

$$a_{9} \cdot p_{4} = p_{2}$$

$$a_{1} \cdot p_{2} = p_{2}$$

$$a_{2} \cdot p_{3} \cdot p_{4} = p_{2}$$

$$a_{1} \cdot p_{2} = p_{2}$$

$$a_{2} \cdot p_{3} \cdot p_{4} = p_{2}$$

$$a_{1} \cdot p_{2} = p_{3}$$

$$a_{2} \cdot p_{3} \cdot p_{4} = p_{3}$$

$$a_{3} \cdot p_{4} = p_{3}$$

$$a_{4} \cdot p_{4} = p_{4}$$

$$a_{5} \cdot p_{4} = p_{5}$$

$$a_{5} \cdot p_{5} = p_{5}$$

$$a_{5$$

1. Kreuze die richtigen Aussagen an! Hinweis: Hier kann dir der Infokasten helfen!