- 1. Graph 1 und Graph 2 gehören zu linearen Funktionen.
- **2.** Folgende Funktionsgleichungen gehören zu linearen Funktionen: $f_1(x) = x$, $f_2(x) = 2x$, $f_3(x) = 2 + 2x$, $f_6(x) = \frac{x}{2} + 2$ ($f_6(x)$ kann man auch wie folgt schreiben $f_6(x) = \frac{1}{2} \cdot x + 2$)

3.

	Steigung	y-Achsenabschnitt
a.	m = 3	b = 1
b.	m = 1,5	b = 1,5
C.	m = -2	b = 1
d.	m = 1	b=4
e.	m=4	b = 0
f.	$m = -\frac{1}{2}$	b = -5,6

- **4.** Steigungsdreieck beschriften:
 - a. Beim ersten Dreieck kann man beispielsweise die Seiten beide mit 1 beschriften. Damit ergibt sich $m=\frac{1}{1}=1$ (alternativ kann man auch beide Seiten mit 2, 3, ... beschriften, es muss nur immer dieselbe Zahl sein).
 - **b.** Die fehlende Seite muss mit 3 beschriftet werden, da $m = \frac{3}{1} = 3$ ist.
 - **c.** Hier berechnet sich $m = \frac{2}{1} = 2$
 - **d.** Die fehlende Seite muss mit **6** beschriftet werden, da $m = \frac{6}{3} = 2$ ist.
 - **e.** Die fehlende Seite muss mit 2 beschriftet werden, da $m = \frac{1}{2}$ ist.

5.

Funktion	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$
Steigung m	-2	-1	$\frac{1}{2}$	1	2
y-Achsen- abschnitt <i>b</i>	7	5	2	1	-1

6.

	Steigung m	y-Achsen- abschnitt b	Funktionsgleichung
a.	3	1	$f_1(x) = 3x + 1$
b.	-2	0	$f_2(x) = -2x$
c.	$\frac{1}{2}$	2,5	$f_3(x) = \frac{1}{2}x + 2,5$
d.	1	-2	$f_4(x)=x-2$

- 7. $f_1(x) = \frac{1}{2}x 1$ $f_2(x) = 5x + 2$ $f_3(x) = -3x + 4$
- **8.** Zur Bestimmung des Funktionswertes an der Stelle x = 0 setzt man den Wert 0 für x in die Funktionsgleichung ein:
 - **a.** $f_1(0) = 0 + 1 = 1$ **b.** $f_2(0) = 3 \cdot 0 = 0$ **c.** $f_3(0) = 1000 \cdot 0 + 9.6 = 9.6$
- **9.** Um zu überprüfen, welche Punkte auf dem Graphen f(x) = 2x + 1 liegen, setzt man die xund y-Koordinaten der Punkte in die Funktionsgleichung ein:
 - **A in** f(x): $1 = 2 \cdot 0 + 1$ ergibt umgeformt 1 = 1, also liegt A auf dem Graph
 - **B** in f(x): $2 = 2 \cdot 2 + 1$ ergibt umgeformt $2 \neq 5$, B liegt nicht auf dem Graph
 - C in f(x): $7 = 2 \cdot 3 + 1$ ergibt umgeformt 7 = 7, also liegt C auf dem Graph D in f(x):
 - $\boldsymbol{0}{=}\; 2\cdot\; \boldsymbol{0} + 1$ ergibt umgeformt \; 0 = 1 , D liegt nicht auf dem Graph
- **10.** Kathi und Leon haben die Steigung richtig bestimmt. Beide haben ein passendes Steigungsdreieck genutzt und berücksichtigt, dass der Funktionsgraph fällt (negatives Vorzeichen).
- **11. a**. f(x) = 3x + 2
- **b**. f(x) = x + 1 (Hier hilft eine Skizze oder Musteraufgabe 2)
- $\mathbf{c}.\,f(x)=4x$
- $\mathbf{d}.\,f(x) = 4x + 0.5$
- e. f(x) = -2x + 4 (Die Nullstelle hat die Koordinaten (2/0). Man kann beispielsweise diesen Punkt einsetzen oder sich mit einer Skizze helfen.)